An Upper Bound on the Reduction Number of an Ideal

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound on the Reduction Number of an Ideal

Let A be a commutative ring and I an ideal of A with a reduction Q. In this paper we give an upper bound on the reduction number of I with respect to Q, when a suitable family of ideals in A is given. As a corollary it follows that if some ideal J containing I satisfies J = QJ , then I = QI, where v denotes the number of generators of J/I as an A-module.

متن کامل

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

An upper bound on the number of Steiner triple systems

Richard Wilson conjectured in 1974 the following asymptotic formula for the number of n-vertex Steiner triple systems: STS(n) = ( (1 + o(1)) n e2 )n2 6 . Our main result is that STS(n) ≤ ( (1 + o(1)) n e2 )n2 6 . The proof is based on the entropy method. As a prelude to this proof we consider the number F (n) of 1factorizations of the complete graph on n vertices. Using the KahnLovász theorem i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2009

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870802210035